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ABSTRACT

Global observations from the Advanced Technology Microwave Sounder (ATMS) onboard the

Suomi National Polar-Orbiting Partnership satellite are affected by striping-patterned noise. An op-

timal symmetric filter method to mitigate the striping noise in warm counts, cold counts, warm load

temperatures, and scene counts instead of antenna temperatures is developed and tested in this study.

The optimal filters are developed based on the results free of striping noise obtained with a striping

noise detecting method by combining the principal component analysis and the ensemble empirical

mode decomposition. The two-point algorithm is then used to calculate antenna temperatures with

warm counts, cold counts, warm load temperatures, and scene counts before and after applying the

optimal filters. The necessity of applying the striping noise mitigation to the scene counts besides the

calibration counts (warm and cold counts) is also shown. This explains why the traditional method to

smooth only calibration counts has failed to remove the ATMS striping noise. The optimal filters

proposed in this study, which remove the high-frequency striping noise without altering low-frequency

weather signals, outperform the conventional boxcar filters adopted in the current operational ATMS

calibration system.

1. Introduction

The Suomi National Polar-Orbiting Partnership

(SNPP) satellite was successfully launched into a sun-

synchronous polar orbit on 28 October 2011 with

an equator crossing time of 1330 local time. The Ad-

vanced Technology Microwave Sounder (ATMS) on-

board SNPP is a new cross-track and line-scanning

microwave radiometer. The ATMS combines the

functionalities of the previous Advanced Microwave

Sounding Unit A (AMSU-A) and Microwave Humidity

Sounder (MHS) into a single instrument. The ATMS is

the most advanced and state-of-the-art satellite-based

microwave instrument that simultaneously provides

temperature- and humidity-sounding information at

the same 96 field-of-view (FOV) Earth view locations.

Compared with its predecessors AMSU-A and MHS,

the ATMS has several improvements including a

wider swath width, additional sounding channels, and

smaller noise equivalent delta temperatures (Weng

et al. 2013b). Kim et al. (2014) evaluated the on-orbit

performance of the ATMS and showed that the ra-

diometric sensitivity was well maintained and that the

radiometric accuracymet or even surpassed expectations.

Many studies have focused on the calibration and vali-

dation of ATMS observations where radiances simulated

by an atmospheric radiative transfer model with global

numerical weather prediction (NWP) datasets (B) serve

as references for observed radiances (O) (Weng et al.

2012, 2013b; Zou et al. 2014; Tian et al. 2018).

Bormann et al. (2013) discovered that striping-

patterned noise was detectable in the differences be-

tween observations and simulations (O2B), suggesting

a contamination of striping noise in ATMS observa-

tions. The diagnosis and mitigation of high-frequency

striping noise are challenging tasks that must be un-

dertaken to fully explore the potential of the ATMS to

NWP and climate studies (Zou et al. 2013; Tian and Zou

2016, 2018; Zou and Tian 2018). Wu and Huang (2009)

and Wu et al. (2009) proposed an ensemble empirical

mode decomposition (EEMD) method for extracting

from raw data different frequency components. For

a given time series, the EEMD method uses infor-

mation about the minima and maxima of the riding

waves in the set of noise-added ensemble data time

series itself and successively extracts the oscillatory

components called intrinsic mode functions (IMFs)

from the highest to the lowest frequencies. Unlike theCorresponding author: Dr. Xiaolei Zou, xzou1@umd.edu
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preexisting harmonic base functions of the Fourier

frequency transform, the IMFs of the EEMDmethod

are locally adaptive basis functions extracted directly

from the data, making them more physically repre-

sentative. The EEMD method also works for data

series representing nonlinear processes. Qin et al.

(2013) pointed out that striping noise is contained

in the first principle component (PC) generated from

the principal component analysis (PCA) of ATMS

observations and applied the EEMD method to

extract the ATMS striping noise. This method can-

not only remove the striping noise in temperature-

sounding channels, but also humidity channels for

which the striping phenomenon is not visible

in O 2 B distributions. Specifically, the first three

high-frequency IMFs are extracted from the first

PC coefficient of antenna temperatures. The re-

moved striping noise has a frequency range centered

at ;1022 s21 and magnitudes of ;0.3K for ATMS tem-

perature channels and 1K for ATMS humidity channels.

Zou et al. (2017) and Zou and Tian (2019) further refined

the PCA/EEMDmethod proposed byQin et al. (2013) to

make it also applicable to the window channels of the

ATMS onboard both the SNPP satellite and theNational

Oceanic and Atmospheric Administration (NOAA)-20

satellite launched in 2017.

A detailed description of converting raw data counts

to antenna temperatures through the ATMS calibra-

tion process is given in Weng et al. (2013b) and in

the ATMS advanced technical baseline documenta-

tion (GSFC 2011). The two-point calibration in-

volves converting Earth scene counts into antenna

temperatures through a linear relationship defined

by warm counts, cold counts, warm load temper-

ature, and cold space temperatures. A quadratic

term accounting for the nonlinear relationship be-

tween antenna temperatures and counts is also added.

Conventionally, radiometric calibration error sources

include target emissivity, measurement uncertainty,

the Rayleigh approximation, and antenna sidelobe

interception (Weng et al. 2013a). Figure 1 shows an-

tenna temperature observations (Fig. 1a) and differ-

ences of antenna temperatures between observations

O and model simulations B (Fig. 1b) for ATMS

channel 8 over a swath at the ascending node of SNPP

on 24 February 2012. An along-track striping noise

feature, with its magnitude varying randomly in the

along-track direction, can be seen in both the observations

FIG. 1. (a) Brightness temperatures at channel 8 in the ascending node on 24 Feb 2012. (b) The differences

of brightness temperatures at channel 8 between the observed and those simulated by the Community

Radiative Transfer Model on 24 Feb 2012.
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(Fig. 1a) and theO2B difference (Fig. 1b) fields.Warm

counts, cold counts, and warm load temperatures are

traditionally smoothed in an operational system using

either a triangular or a boxcar filter to reduce the effect

of radiometric instrument errors on antenna tempera-

tures, while the scene counts are not smoothed. To more

effectively suppress the instrument error due to noise, in

this study, a new set of optimal filters for ATMS warm

FIG. 2. Fourier spectra with 81-point running means for the first six IMFs of (a) warm counts

and (b) cold counts at channel 8 on 24 Feb 2012.

FIG. 3. As in Fig. 2, but for warm load temperatures. Five IMFs are removed.
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counts, cold counts, warm load temperature, and scene

counts is thus proposed. Section 2 briefly describes

ATMS instrument characteristics and the two-point

calibration. Theoretical derivations of the weighting

coefficients of the optimal filters are provided in

section 3. Section 4 presents numerical results of the

optimal filters and the characteristics of the striping

noise removed by the optimal filters. A summary of

this study is finally given in section 5.

2. ATMS instrument and observation features

a. ATMS channel characteristics

The ATMS is a cross-track, line-scanning sensor. It

takes 2.67 s to complete one scan cycle, which contains

96 FOVs for all 22 ATMS microwave temperature- and

humidity-sounding channels. With a sampling interval of

1.118, the scan angle of the outmost FOV is 52.78. ATMS

channels 1–3 and 5–16 have similar central frequencies as

FIG. 4. As inFig. 2, but for thefirst PCcoefficientof scene counts at channel 8.Three IMFsare removed.

TABLE 1. Channel frequencies, peak weighting functions (WFs), filter spans (FSs) of optimal striping filters for ATMS warm counts and

cold counts, and scene counts.

Channel No.

Central frequency

(GHz) Peak WF (hPa)

Warm count

FS (N)

Cold count

FS (N)

No. of IMFs

removed FS (N)

1 23.8 Surface 8 8 2 14

2 31.4 Surface 8 8 2 14

3 50.3 Surface 10 10 3 23

4 51.76 950 10 10 3 23

5 52.8 850 8 10 3 18

6 53.596 6 0.115 700 8 10 3 17

7 54.4 400 8 10 3 19

8 54.94 250 8 10 3 17

9 55.5 200 10 10 3 17

10 57.2903 100 8 10 3 16

11 57.2903 6 0.115 50 10 10 3 18

12 57.2903 25 10 10 3 18

13 57.2903 6 0.322 10 10 10 3 18

14 57.2903 6 0.322 6 0.010 5 10 10 3 20

15 57.2903 6 0.322 6 0.004 2 10 10 3 17

16 88.2 Surface 8 8 2 16

17 165.5 Surface 8 8 3 23

18 183.31 6 7 800 8 8 3 22

19 183.31 6 4.5 700 8 8 3 22

20 183.31 6 3 500 8 8 3 22

21 183.31 6 1.8 400 8 8 3 22

22 183.31 6 1.0 300 8 8 3 23
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channels 1–15 of the traditional microwave temperature-

sounding instrument AMSU-A. ATMS channels 17–22

contain channels with similar central frequencies as the

five channels from the traditional humidity-sounding

instrument MHS. Compared with its predecessors

AMSU-A and MHS, the ATMS has an extra tem-

perature channel 4 with its weighting function lo-

cated in the lower troposphere and two new humidity

channels 19 and 21. The swath width of the ATMS is

2500 km, which is wider than both AMSU-A and

MHS swath widths, leaving almost no data gaps be-

tween two neighboring swaths over the entire globe.

The beam widths of channels 1–2, 3–16, and 17–22

are 5.28, 2.28, and 1.18, respectively.

b. Derivation of antenna temperatures from raw
counts

During each ATMS scanning cycle, the antenna first

scans the Earth scene, then cold space, and finally the

blackbody warm target (Weng et al. 2013b) to record the

measured scene counts, warmcounts, and cold countswhen

these three segments are completed. The antenna tem-

peratures can be derived from the measured raw counts

based on the following two-point calibration equations:

FIG. 5. Normalized cost function as a function of filter spanN for (top) warm counts, (middle)

cold counts, and (bottom) scene counts. The number of scanlines involved in the optimal filter is

indicated by circles.
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ch(k)2Tc
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where the subscript ‘‘ch’’ represents the channel number,

Gch(k) is the gain function, Cs
ch(k, i)stands for the scene

count at the ith FOVof the kth scanline,Cc
ch(k) andC

w
ch(k)

are the cold count and the warm count at the kth scanline,

respectively, Tw
ch(k) is the warm load temperature at the

kth scanline, and Tc
ch(k) is the cold space temperature that

is fixed at each channel. The overbar on Tw
ch, C

w
ch, and Cc

ch

indicates a boxcar-smoothed warm load temperature,

warm count, and cold count, respectively. The term

Qch(k, i) is a quadratic correction term, written as

Q
ch
(k, i)5 b

0,ch

3

(
12 43

"
T

b,ch
(k, i)2Tc

ch(k)

Tw
ch(k)2Tc

ch(k)
2 0:5

#2)
,

(2)

where b0,ch is a quadratic coefficient. Both the warm

load temperature Tw
ch(k) and the cold space temperature

FIG. 6.Weighting coefficients of optimal filters for (top) warm counts, (middle) cold counts, and

(bottom) scene counts.
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Tc
ch(k) have been corrected by DTw

ch and DTc
ch, respec-

tively, to account for channel biases. Weng et al. (2013b)

gave more details about the ATMS calibration process

from raw data counts to antenna temperatures.

3. Methodology

a. The EEMD method

The method employed to extract the noise in the data

series fCw
ch(k)g, fCc

ch(k)g, and fTw
ch(k)g (k5 1, 2, . . . ,K)

is the EEMD proposed by Wu and Huang (2009) where

Cw
ch(k), C

c
ch(k), and Tw

ch(k) stand for warm counts, cold

counts, and warm load temperatures in the kth scanline of

channel as indicated by the subscript ch. The time series of

these data are then decomposed into a set of IMFs:

C(k)5 �
L

m5l

IMF
m
(k)1R

L
(k) , (3)

where RL is the residual of the data C(k) after the first L

number of IMFs have been subtracted. In other words,

the signals in the data series are decomposed successively

from high frequencies to low frequencies. The first few

IMFs describe the high-frequency noise. Therefore, the

FIG. 7. Response functions for (top) warm counts, (middle) cold counts, and (bottom) scene

counts calculated with the weighting coefficients in Fig. 5. Contours over dark blue shaded

areas all have the value of 0.01 because of oscillations of the response functions.
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warm count, cold count, andwarm load temperature data

series fCw
ch(k)g, fCc

ch(k)g, and fTw
ch(k)g (k5 1, 2, . . . ,K)

can be smoothed by removing the first few high-

frequency IMFs to obtain the EEMD-smoothed data

series Cw,eemd
ch (k), Cc,eemd

ch (k), and Tw,eemd
ch (k) as follows:

Cw,eemd
ch (k)5Cw

ch(k)2 �
Lw

m5l

IMF
m
(k) ,

Cc,eemd
ch (k)5Cc

ch(k)2 �
Lc

m5l

IMF
m
(k) ,

Tw,eemd
ch (k)5Tw

ch(k)2 �
LT

m5l

IMF
m
(k) . (4)

The optimal filters for ATMS striping mitigation will be

developed using these EEMD-smoothed warm count,

cold count, and warm load temperatures Cw,eemd
ch (k),

Cc,eemd
ch (k), and Tw,eemd

ch (k) as training samples.

b. Optimal symmetrical filters on warm counts and
cold counts

Instead of using the EEMD-based method, we apply

an optimal (2N1 1) point filter to each of the data series

fCw
ch(k)g, fCc

ch(k)g, and fTw
ch(k)g (k 5 1, 2, 3, . . . , K) to

obtain three smoothed datasets fCw,opt
ch (k)g, fCc,opt

ch (k)g,
and fTw,opt

ch (k)g:

C
w,opt
ch 5 �

N

n52N

aw
nC

w
ch(k1 n) , (5a)

C
c,opt
ch 5 �

N

n52N

ac
nC

c
ch(k1n) , (5b)

T
w,opt
ch 5 �

N

n52N

aT
n T

w
ch(k1n), and (5c)

where aw
n , a

c
n, and aT

n (n 5 0, 61, . . . , 6N) are the op-

timal weighting coefficients for the optimal symmetrical

filters on warm counts, cold counts, and warm load

temperatures, and N is the total number of scanlines

included in the filter. The effect of the filter defined in

(5) on the data can be examined by comparing the power

spectrum densities of the original data series with those

of the smoothed series. Taking warm counts as an

example, a Fourier transform is applied to both the

original data sequence fCw
ch(k)g and the smoothed data

sequence fCw,opt
ch (k)g:

Cw
ch(k)5 �

K21

m50

f
m
e2imkb, and (6a)

C
w,opt
ch (k)5 �

K21

m50

f
m
e2imkb , (6b)

where b5 2p/K, m is the wavenumber (m 5 0, 1, . . . ,

K2 1), and fm and f m are Fourier coefficients that can be

written as

f
m
5

1

K
�
K21

k50

Cw
ch(k)e

2imkb, and (7a)

f
m
5

1

K
�
K21

k50

C
w,opt
ch (k)e2imkb . (7b)

The ratio rm of the Fourier coefficient of the filtered data

series f m to the Fourier coefficient of the filtered data

series fm can then be written as

FIG. 8. (a) Normalized cost function as a function of filter spanN

for the warm load temperature. The number of scanlines involved

in the optimal filter is shown by the circle. (b) Weighting coeffi-

cients and (c) response function for warm load temperatures.
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r
m
5
f
m

f
m

. (8)

The ratio rm is called the spectral response function of

the filter defined in (5). In the case of a symmetrical filter

where an 5a2n, (5a) can be written as

C
w,opt
ch (k)5

1

2
�
N

n50

a
n
[Cw

ch(k2 n)1Cw
ch(k1n)] . (9)

Substituting (6a) and (7a) into (9), we obtain

C
w,opt
ch 5

1

K
�
K21

k50

1

2
�
N

n50

a
n
[Cw

ch(k2 n)1Cw
ch(k1 n)]e2imkb

5 �
N

n50

a
n
cos(mnb)f

m
. (10)

Substituting (10) into (8), we then obtain an analytic

expression for the spectral response function rm:

r
m
5 �

N

n50

aw
n cos(mnb) . (11)

The weighting coefficients for the symmetric filter

for warm counts are obtained by requiring that the

filter-smoothed warm counts approximately equal the

EEMD-smoothed ones; that is,

8>>><
>>>:

min J5min �
K

k51

"
�
N

n52N

aw
nC

w
ch(k1 n)2Cw,eemd

ch (k)

#2
,

�
N

n52N

aw
ch 5 1:

(12)

The constraint minimization problem in (12) is solved

using the Lagrange method:

8>>>><
>>>>:

L(aw
n , l)5 J1 l

 
12 �

N

n52N

aw
n

!
,

›L

›aw
ch

5 0,
›L

›l
5 0:

(13)

Similar procedures are also applied to cold counts and

warm load temperatures.

FIG. 9. Variations in (a) warm counts and (b) cold counts along 700 scanlines (i.e., a swath

between 6558N) before (gray lines) and after (red lines) removing three IMFs at channel 8.

JULY 2019 T IAN AND ZOU 1305



c. Optimal symmetrical filters for scene counts

Different from warm counts, cold counts, and warm

load temperatures, scene counts vary not only in the

along-track direction but also in the cross-track di-

rection. The striping noise remains nearly constant

in the along-track direction. A PCA is first done to

extract the first PCA component so that the pri-

mary scan-dependent features in the scene counts can

be captured. The EEMD- and optimal-filtering ap-

proaches are applied to the first PCA component. The

data matrix for the PCA analysis of scene counts can be

expressed as

Cs
M3N 5

0
BBBB@

Cs
1,1 Cs

1,2 � � � Cs
1,N

Cs
2,1 Cs

2,2 � � � Cs
2,N

..

. ..
.

1 ..
.

Cs
M,1 Cs

M,2 � � � Cs
M,N

1
CCCCA, (14)

where M is the total number of scanlines, and N is the

total number of FOVs. The scene counts at the ith FOV

of the kth scanline Cs
k,i can then be expressed as (Qin

et al. 2013)

Cs
k,i 5 �

96

j51

e
j,i
u
k,j
, (15)

where ej,i is the ith (scan position) element of the jth PC

mode ej, and uk,j is the kth (scanline) element of the jth

PC coefficient uT
j . The first L IMFs of the first PC

coefficient, describing the high-frequency striping

noise, are removed, and the remaining PCA com-

ponents are kept the same to obtain the EEMD-

smoothed scene counts:

Cs,eemd
i,k 5 e

i,1

"
u
1,k

2 �
L

m51

IMF
m
(k)

#
1 �

96

j52

e
i,j
u
j,k
. (16)

A (2N 1 1)-point filter can be applied to obtain a filter-

smoothed scene count data series fCs,opt
i,k g as follows:

C
s,opt
k,i 5 �

N

n52N

as
nei,1u1,k1n

1 �
96

j52

e
i,j
u
j,k
, (17)

where as
n (n 5 0, 61, . . . , 6N) are the optimal weighting

coefficients for the scene counts using a procedure similar

to that described in section 3b.

FIG. 10. As in Fig. 9, but for channel 22.
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4. Numerical results

a. Spectrum analyses of IMFs of calibration counts

Data series of warm counts, cold counts, warm load

temperatures, and the first PC coefficient of scene

counts for all ATMS channels within 558S–558N on

24 February 2012 were decomposed into a series of

IMFs. Figure 2 shows the Fourier spectra of the first six

IMFs as a function of frequency for warm counts and

cold counts at channel 8. As the IMF number increases,

its peak amplitude is located at increasingly lower fre-

quencies. Noise at high frequencies is captured in the

first few IMFs, and large-scale variations are captured

in the remaining IMFs. The main criterion to decide

which IMFs are noise, or how many IMFs to remove, is

whether the peak amplitude of a certain IMF continues

to decline. At the beginning of the fourth IMF for both

warm counts and cold counts, the peak amplitude is no

longer smaller than that of the previous IMFs. So the

first three IMFs are primarily noise signals. The magni-

tudes of the first three IMFs at low frequencies are small,

suggesting that removing the first three IMFs will not

change the warm count or cold count features at low

frequencies. Results obtained for the other 21 ATMS

channels are similar (not shown). Therefore in this study,

the first three IMFs are removed for bothwarm counts and

cold counts at all ATMS channels.

FIG. 11. Variations in (a) warm counts and (b) cold counts with the optimal filter (red lines) and

17-point smoothing (blue lines) for channel 8.

FIG. 12. Variations in the response function as a function of

frequency for the 17-point filter (blue line) and the optimal filter

(red line) applied to warm counts of channel 8. The red circles show

the response function for channel 12 after application of the opti-

mal filter. The response functions for the cold counts are the same

as those shown here (figure omitted).
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Figure 3 shows the Fourier spectra of the first six

IMFs for warm load temperatures. Note that the fifth

and sixth IMFs peak at the same frequency but that

the amplitude of the sixth IMF is smaller than that of

the fifth IMF. This suggests that no significant signal

can be found at lower frequencies starting from the

sixth IMF. Unlike warm counts or cold counts that

change only in the along-track direction, ideal warm

load temperatures should have constant values, im-

plying zero Fourier spectra for the true signal. Thus, a

total of five IMFs are removed from warm load tem-

peratures. Figure 4 shows the Fourier spectra of the

first six IMFs of the first PC coefficient for scene

counts at channel 8. The fourth IMF has much larger

magnitudes than the third IMF at both the peak and

low frequencies. Therefore, removing the first three

IMFs is enough to eliminate the noise while keep-

ing the large-scale information. A similar analysis was

carried out for all 22 channels. Table 1 lists the total

number of IMFs removed from scene counts for each

ATMS channel. For ATMS window channels 1–2 and

16, only two IMFs need to be removed because two

IMFs are sufficient to capture the data noise. For the

remaining channels, three IMFs are removed.

b. Properties of the optimal symmetrical filters

As described in sections 3 and 4, the EEMD-smoothed

warm counts, cold counts, warm load temperatures,

and scene counts are then taken as training samples to

establish the optimal filters expressed in (5) and (17).

FIG. 13. (a) Variations in antenna temperature for channel 8 at nadir with (red) and without

(blue) applying the optimal filter on the scene counts.Warm counts, cold counts, andwarm load

temperatures are all smoothed. (b) Antenna temperatures at channel 8 without smoothing

scene counts.
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To decide on the filter span N, weighting coefficients

and cost functions of (2N 1 1) point symmetrical op-

timal filters with different spans ranging from 2 to 30

were calculated. Cost functions describe how close the

counts smoothed by EEMD are to those by the opti-

mal filter and have different magnitudes at different

channels. Figure 5 shows variations in the normalized

cost functions of the optimal filters as a function of

filter span for warm counts, cold counts, and scene

counts at all ATMS channels. The cost functions drop

rapidly as the filter span N increases, suggesting that

the optimal filters tend to capture the EEMD features

more closely if more scanlines are involved. The goal

is to remove striping noise with the least number of

scanlines in the optimal filter. The black circles in

Fig. 5 indicate the selected filter spans of the optimal

filters (see also Table 1). Surface channels have nar-

rower filters mainly because there are only two IMFs

removed, making changes to the counts data smaller.

Temperature-sounding channels have wider filters

than humidity-sounding channels for warm counts and

cold counts, but narrower filters for scene counts.

Figure 6 shows weighting coefficients of the optimal

filters for warm counts, cold counts, and scene counts

at all channels. All weighting coefficients have sym-

metrical parabolic shapes. This suggests that data

points with identical distances to the filtering point

weigh exactly the same within any filter. Also, those

closer to the filtering point (n 5 0) are weighted more

than data points farther away. The filtering points

themselves appear to have the greatest importance,

while data points farther away have less impact on the

smoothed counts, which is reasonable. Weighting co-

efficients with the same distance to the filtered points

have similar magnitudes for warm counts and cold

counts at different channels. Scene counts at channels

1–2 and 16 have larger weighting coefficients than

those for the other channels because the sum of the

weighting coefficients of any filter is unity, and fewer

scanlines are involved in these three window channels.

Figure 7 shows the spectral response functions

calculated with the optimal weighting coefficients

shown in Fig. 6 according to (11). For warm counts,

cold counts, and scene counts at all channels, the re-

sponse functions are ;1 until they drop sharply to

around zero at ;1022 s21. The magnitudes of low-

frequency signals are thus not altered, and the high-

frequency noise is significantly reduced. The counts

data at low frequencies are not changed much by the

optimal filters. Also, the majority of noise removed

centered around 1022 s21. This implies that the opti-

mal filters remove striping information while retain-

ing large-scale signals. The contours over the dark

blue shaded areas all have the value of 0.01 because of

the oscillations in response function values. For scene

counts, the response functions at window channels 1–2

and 16 decrease from 1 to 0 at higher frequencies,

suggesting that more signals are retained. It agrees

with the fact that only two IMFs are removed, com-

pared to three IMFs at other channels. Although

corrections might be different among ATMS chan-

nels, warm load temperatures do not change as the

channel number changes. Figure 8 shows the cost

functions, weighting coefficients, and response func-

tions for warm load temperatures.

c. Comparison between the optimal filters and the
boxcar filters

Figures 9 and 10 show the warm counts and cold

counts before and after application of optimal filters

at channels 8 and 22, respectively. After the optimal

filters are applied, warm counts and cold counts be-

come much smoother without any visible noise at both

channels while the larger-scale variations are kept,

proving the effectiveness of the optimal filters. Con-

ventionally, 17-point boxcar filters are used to smooth

warm counts and cold counts. Figure 11 shows the

variations in warm counts and cold counts after ap-

plying both the optimal filter and the boxcar filter.

Compared with the optimal filter, the boxcar filter

fails to smooth out all visible noise and significantly

reduces the magnitudes of the minimum and maxi-

mum values.

Response functions for channel 8 after application

of the boxcar filter and the optimal filter, both with the

same filter widths of 8, were also calculated. Figure 12

shows that the response function for the optimal fil-

ter falls from 1 to around 0 when the frequency in-

creases. The magnitudes of low-frequency signals

remain constant while those of high frequencies are

FIG. 14. Striping noise (K) removed by the optimal symmetric filter

for ATMS channel 8 at the ascending node on 24 Feb 2012.
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FIG. 15. (a) ATMS channel-8 antenna temperature differences between observations andmodel simulations (i.e.,

O 2 B) on 24 Feb 2012 after the destriping using the optimal symmetric filter. ATMS channel-8 antenna tem-

peratures between observations and model simulations (i.e., O 2 B) on 1 Mar 2012 (b) before and (c) after the

destriping using the optimal symmetric filter.
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significantly reduced. The response function for the

boxcar filter starts to decrease sharply at frequencies

lower than 1022 s21, implying that the boxcar filter

suppresses low-frequency signals that should be re-

tained. Another problem is that in the high-frequency

range, where the major part of the noise still exists, the

oscillatory behavior of the response function of the

boxcar filter hinders this filter from completely re-

moving the actual data noise.

d. The effects of optimal filters on antenna
temperatures

Smoothed warm counts, cold counts, and warm load

temperatures are commonly used to calculate an-

tenna temperatures. Scene counts are not smoothed.

Figure 13 shows antenna temperatures for ATMS

channel 8 at nadir calculated with and without ap-

plying the optimal filter to scene counts. Warm counts,

cold counts, and warm load temperatures are all

smoothed here using the optimal filter. Even if noise in

thewarm counts, cold counts, andwarm load temperatures

are effectively smoothed out, antenna temperatures are

still contaminated with striping noise if the scene counts

are not smoothed (Fig. 13b). This confirms the necessity of

smoothing the scene counts.

Figure 14 shows the global distributions of the striping

noise extracted from antenna temperatures for ATMS

channel 8. The destriping algorithm is also applicable

to observations on other times. Figure 15 gives the re-

gional distributions of the O 2 B differences in ATMS

channel-8 antenna temperatures before (Fig. 1b) and

after destriping on 24 February 2012 (Fig. 15a) and

1 March 1 2012 (Figs. 15c,d). The striping noise is

;0.3K for channel 8, which agrees well with the re-

sults described by Qin et al. (2013). Striping patterns

are faintly visible in the O 2 B field before destriping

(Fig. 15b). These striping patterns are much less visible

after destriping (Fig. 15c).

5. Summary and conclusions

An along-track striping phenomenon has been de-

tected in globalO2B distributions ofATMS temperature-

sounding channels. The EEMD method is typically

employed to characterize the noise in warm counts,

cold counts, warm load temperatures, and scene

counts. However, this method is not convenient for

operational applications. The development of a set of

optimal filters that can reduce noise in calibration

counts as efficiently as the EEMD does is thus desir-

able. The conventionally used boxcar filters in satel-

lite calibration tend to alter low-frequency weather

signals when suppressing high-frequency noise. In this

study, four sets of optimal symmetrical filters were

designed and developed for the calibration counts of

all 22 ATMS channels. The optimal filters efficiently

removed striping noise within antenna temperatures

while keeping the large-scale features intact. The

necessity of smoothing the scene counts is further

confirmed. If calibration counts are smoothed but

scene counts are not, the striping noise will still exist

and remain visible in global O 2 B distributions.

Further investigation into the root cause of the strip-

ing noise is needed and impacts of striping noise on

ATMS data applications in NWP and climate studies

will be reported on in follow-on papers.
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