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Abstract
The global Model for Prediction Across Scales (MPAS) with shallow-water (SW)
dynamics is taken as the forecast model to characterize the errors under a
variable-resolution (VR) mesh. An idealized experiment featuring gravity and
Rossby waves triggered by orography is conducted with two meshes consisting
of the same number of grid cells, which directly indicates the computational
cost. One mesh is of 120-km uniform resolution (UR), the other has 53–210 km
VR. Both simulations are compared with the solutions from a 60-km uniform
high-resolution (HR) mesh serving as the reference. The differences with respect
to the HR results for both UR and VR experiments are manifested as rapidly
propagating gravity waves circling the Earth about every two days. These sig-
nals are regarded as errors due to insufficient resolution. Over most of the Earth,
the resolution of the VR mesh is coarser than that of the UR mesh. The magni-
tudes of the errors in the VR experiment are found to grow larger than those in
the UR case shortly after the simulation starts. The sensitivities to the errors in
the eight-day forecast calculated with the MPAS–SW adjoint model show simi-
lar propagation patterns, following a nonlinear state trajectory. The sensitivities
under VR suggest that little contribution to the errors throughout the simulation
process is made within the finely resolved areas. In the initial conditions under
VR, the error signals come primarily from the coarse-resolution regions imme-
diately outside the areas with enhanced resolution. This finding implies that, in
simulations under VR, error signals generated in the coarsely resolved regions
can be propagated into the finely resolved areas when conveyed by wave types
allowed in the model, that is, gravity waves in the case of this study, the rate of
which depends on the fluid mean height.
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1 INTRODUCTION

The Model for Prediction Across Scales (MPAS) is a global
modeling framework, under which geophysical dynami-
cal cores such as atmospheric, oceanic, and shallow-water

(SW) can simulate and predict the evolution of fluids.
One of the unique features of the MPAS is that it offers
the option to perform global simulations at both uniform
and smoothly variable resolutions (Ringler et al., 2008;
2010; 2011; 2012; 2013). The model is spatially discretized
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following the Arakawa C-grid with finite-volume irregular
spherical centroidal Voronoi tessellation (SCVT) meshes
(Thuburn et al., 2009). In addition to globally uniform high
resolution, under such an SCVT discretization scheme,
regions of interest can be configured at high resolution
while other areas throughout the globe may use relatively
coarse resolution, with smooth transitions in between. The
availability of such an option can serve as a rather eco-
nomic solution to the age-old challenge of expensive com-
putational costs in global numerical modeling (Satoh et al.,
2008). This capability to simulate under both uniform
and variable resolution is applicable to both short-term
weather and long-term climatological studies (Michaelis
et al., 2019). The smooth transition stands in contrast to
abrupt resolution changes such as the nesting method in
the Weather Research and Forecasting (WRF) model. A
sudden change of resolution in the discretized grids is
subject to generation of erroneous signals, which is not
expected to be the case with smooth resolution transi-
tions, as in MPAS. This advantage is confirmed in the
study of Hagos et al. (2013). Several previous studies have
explored the underlying issues of numerical simulations at
variable resolution. The main conclusion of Ringler et al.
(2011) is that solution error is controlled primarily by the
grid resolution in the coarsest part of the model domain.
Davies (2017) found that, in Limited-Area Model (LAM)
simulations under both uniform and variable resolution,
errors arise from the lower-resolution lateral boundary
conditions and propagate into the regions of interest. In
this study, it was also found that dynamical downscal-
ing cannot recover the smaller scale features that are only
resolvable at high resolution, which should have devel-
oped upstream of the lateral boundaries.

As introduced in Tian and Zou (2020) and Tian (2020),
the tangent linear (TL) and adjoint (AD) models are crit-
ical additions to the nonlinear MPAS–Atmosphere and
MPAS–SW dynamical cores, in their significant roles of
diagnosing a variety of atmospheric model properties
and forming variational data assimilation systems. Rabier
et al. (1992) investigated the sensitivities of cyclogenesis to
the model initial conditions using primitive atmospheric
equations. Errico and Vukicevic (1992) demonstrated the
sensitivities in two synoptic cases with the adjoint model
of the Fourth Mesoscale Model (MM4) of Pennsylvania
State University (PSU)–National Center for Atmospheric
Research (NCAR). Errico (1997) discussed in detail the
potential applicability of adjoint models to meteorological
topics including sensitivity analysis, model singular vec-
tors, and variational data assimilation. Zou et al. (1997)
documented the development and application potential
of the TL/AD version of the PSU–NCAR MM5 model
and formulated a four-dimensional variational (4D-Var)
assimilation system. In Tian and Zou (2020), the original

MPAS–Atmosphere dynamical core was restructured into
a python–fortran framework owing to the conve-
nience offered by python. Under the same framework,
the TL/AD version of MPAS–Atmosphere was developed,
which demonstrated its applicability in efficient sensi-
tivity analysis. In contrast to the nonhydrostatic dynam-
ics simulated by MPAS–Atmosphere, MPAS–SW solves
the SW equations numerically in a global domain; these
equations are known for their simplicity and yet capabil-
ity to simulate various atmospheric phenomena includ-
ing gravity waves, barotropic instability, Rossby waves,
and geostrophic adjustment (Holton, 1973). Tian (2020)
documented the development of the MPAS–SW TL/AD,
which was then applied to obtain the model’s singular
vectors (SVs) to show the improved predictability under
a smoothly variable-resolution mesh in the case of Hurri-
canes Sandy and Joaquin.

In this study, the nonlinear MPAS–SW model and its
TL/AD models are applied in characterizing error evo-
lution under meshes of both uniform and variable reso-
lution. The sources of the errors will be analyzed quan-
titatively by showing the adjoint sensitivities of the the
initial conditions to the error field at the final forecast
time. In Section 2, the global MPAS shallow-water model
is introduced briefly. Section 3 describes the development
of TL/AD models for MPAS–SW and how to conduct sen-
sitivity analysis with an adjoint model. In Section 4, the
numerical results from both nonlinear forward and adjoint
models will be analyzed. Section 5 summarizes and con-
cludes this study.

2 MPAS–SW MODEL AND TEST
CASE DESCRIPTION

The shallow-water model is a widely employed tool in
the field of meteorology. Among MPAS-related research,
Ringler et al. (2008) formulated the shallow-water
equations under SCVT meshes to test the validity of
numerical simulations under discretization with SCVT.
With the SW model, Ringler et al., (2010,2011) tested the
C-grid discretization under SCVT further with a set of
standard idealized cases from Williamson et al. (1992)
and verified that the numerical scheme in MPAS exhibits
conservation of total energy within the time-truncation
errors. In this study, the same SW model under the
global MPAS framework and its TL/AD developed in
Tian (2020) are adopted to demonstrate the error features
under a variable-resolution SCVT mesh. The nonlinear
continuous SW equations can be written as follows:

𝜕h
𝜕t

+ ∇(hu) = 0, (1)
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𝜕u
𝜕t

+ (u∇)u + f k × u = −g∇(h + b), (2)

in which the model prognostic variables include the fluid
height h and wind component u in directions normal
to the cell edges; f = 2Ω sin 𝜃, where 𝜃 denotes latitude,
and b are the Coriolis parameter and bottom topography
heights, respectively. The time integral of Equations 1 and
2 is implemented following the fourth-order Runge–Kutta
discretization scheme to achieve fourth-order accuracy in
time (Ringler et al., 2008), in which no limiter, filter, or
dissipation is included. The MPAS–SW TL/AD models
are built with the same temporal discretization. Spatially,
the ∇2 and ∇4 dissipations are configurable in both the
nonlinear forward and TL/AD models, in the presence
of which small-scale energy will be dissipated with min-
imal impact on large-scale motions (Klemp, 2017). The
initial conditions are specified following test case 5 (TC5)
in Williamson et al. (1992), that is, zonal flow over an iso-
lated mountain. The mountain heights are related to b in
Equation 2 following the relationship

bs = b0(1 − r∕R), (3)

where b0 = 2000 m, R= 20◦, and r2 = min [R2, (𝜆 − 𝜆c)2 +
(𝜃 − 𝜃c)2]. The center of the mountain is located at [𝜆c =
90◦W, 𝜃c = 30◦N]. The actual distribution of the moun-
tain height from Equation 3 can be found as contoured in
Figure 1. The wind field is derived from the streamfunc-
tion, which is initialized as

𝜓 = −au0(sin 𝜃 cos 𝛼 − cos 𝜆 cos 𝜃 sin 𝛼), (4)

where a is the radius of the Earth and u0 = 20 m⋅s−1, and
𝛼 is the angle between the axis of solid-body rotation and
the polar axis of the spherical coordinate system, which is
0 in the case of this study. The height field is then given as

gh = gh0 −
(

aΩu0 +
u2

0

2

)
× (− cos 𝜆 cos 𝜃 sin 𝛼 + sin 𝜃 cos 𝛼)2,

(5)
in which mean height h0 = 5960 m and the rotation rate of
the Earth Ω = 7.292 × 10−5 rad⋅s−1.

The mountain heights and wind field defined in
Equations 3 and 4 are specified using three different
meshes: (a) uniform 120-km resolution (UR) mesh with
40,962 grid cells in total, (b) mesh with variable resolu-
tion (VR) from 53–210 km, also consisting of 40,962 grid
cells, and (c) uniform 60-km or high-resolution (HR) mesh
having 163,842 grid cells. Under the condition of the same
integration time-step size, the number of grid cells on a
mesh directly indicates the computational cost of the simu-
lations, as the MPAS model essentially loops over each cell
to calculate the tendency terms following the dynamical

F I G U R E 1 Average of cell-to-cell distance (shaded) in the
variable-resolution mesh with 40,962 grid cells with the center of
the refined resolution at [30◦N, 90◦W], and the distribution of
surface heights (contoured) in the idealized experiment [Colour
figure can be viewed at wileyonlinelibrary.com]

relations. The shading in Figure 1 is the average cell-to-cell
distance in the case of the VR mesh. The center of the area
with refined resolution is at the same spot as the center
of the mountain defined in Equation 3. Over the region
marked by the black box in Figure 1, where the resolu-
tion gradually transitions, the spatial distributions of the
hexagonal cells in the cases of UR, VR, and HR meshes
are illustrated in Figure 2. The solutions of TC5 obtained
under the HR mesh will serve as the referenced “truth” for
simulations under the UR and VR meshes. The deviations
from the HR solutions are regarded as errors due to insuffi-
cient resolution. As the zonal flow in the initial conditions
(Figure 3a) passes over the mountain, Rossby waves are
excited in the presence of nonlinear meridional variations
of the Coriolis parameter serving as the restoring force, as
well as gravity waves (Figure 3b–d).

3 TL/AD OF MPAS–SW

3.1 Development of TL/AD

The nonlinear MPAS shallow-water dynamical core in
Equations 1 and 2 can be expressed as

x(tr) = (x(t0)), (6)

in which the model takes the initial condition x(t0) (i.e.,
u and h) at the starting time t0 as input and solves SW

http://wileyonlinelibrary.com
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F I G U R E 2 Spatial
distributions of the hexagonal grid
cells within the region defined with
a black box in Figure 1, from (a)
uniform 120-km resolution, (b)
variable resolution, and (c) uniform
60-km resolution [Colour figure can
be viewed at wileyonlinelibrary.com]

Equations 1 and 2 numerically to obtain the state variable
x(tr) at forecast time tr.  in this case is also called the
nonlinear MPAS–SW forward operator. The tangent lin-
ear model of MPAS–SW can be developed following the
relationship of Zou et al. (1997) and Tian (2020):

Δx(tr) = M(x(t0))Δx(t0) =
𝜕(x(t0))

𝜕x
Δx(t0), (7)

where the symbol Δ denotes the perturbation of the non-
linear prognostic variable x. The tangent linear operator
M is the derivative of  with respect to every prognos-
tic and diagnostic variable in the nonlinear MPAS–SW or
the Jacobian of MPAS–SW. The TL model takes a small
perturbationΔx(t0) at time t0 as input and predicts the per-
turbations Δx(tr) at the forecast tr evolved following the
nonlinear state trajectory. The adjoint model MT is practi-
cally the transpose of the tangent linear model M, which
can be expressed as

Δx̂(t0) = MT(x)Δx̂(tr). (8)

In Equation 7, the Δx̂ denote adjoint variables. The
adjoint model integrates backwards from forecast time tr
to time t0. During the backward integration of the adjoint

model, nonlinear forward trajectories of the prognostic
variables are required in the calculation process. Thus,
in the practical implementation, the nonlinear forward
model is first run to generate and store the prognostic
variables at every time step from t0 to tr.

3.2 Adjoint sensitivity analysis

The primary application of adjoint models is sensitivity
analysis, which is the fundamental feature that derives
other applications, including singular vectors and varia-
tional assimilation (Errico, 1997; Zou et al., 1997). Tian and
Zou (2020) demonstrated an example of adjoint sensitiv-
ity analysis with the MPAS–Atmosphere adjoint model in
a baroclinic instability case. In the case of calculating sen-
sitivities using an adjoint model, the quantity of interest
(QOI, J) is first defined as

J = J(x(tr)), (9)

in which J is a function of the model variable at the fore-
cast time x(tr). The QOI, also called the response function,
can be a variety of variables: for example, mean squared

http://wileyonlinelibrary.com


TIAN 5

F I G U R E 3 Spatial distribution of the height field of the
high-resolution experiment in (a) the initial conditions and (b)
two-day, (c) four-day, and (d) six-day forecasts simulated by the
MPAS–SW model [Colour figure can be viewed at
wileyonlinelibrary.com]

error (MSE), vorticity, surface pressure. Studies often aim
to find the sensitivities of the response function at the fore-
cast time to the state variables in the initial conditions. The
approaches to finding such sensitivities generally involve
comparing the outcomes of the model simulations with
and without a slight perturbation in the initial conditions,
that is, J(x(t0) + Δx(t0)) and J(x(t0)). Thus, the sensitivity
of J(x(tr)) to the initial condition x(t0) can be approximated
by

ΔJ ≈
∑

k

𝜕J
𝜕xtr ,k

Δxtr ,k, Δxt,k ≈
∑

k

𝜕xtr ,j

𝜕x0,k
Δx0,k. (10)

In this approach, the magnitudes of the initial per-
turbations have to be small in order to obtain an accu-
rate approximation of the gradient of J with respect to
the perturbation Δx0,k. In addition, the knowledge of the

sensitivity of J to all variables at all locations will require
a great number of model runs. In comparison, finding the
sensitivities of J with respect to the initial conditions with
adjoint models can be expressed simply as (Errico, 1997)

𝜕J
𝜕x0,j

=
∑

k

𝜕xtr ,k

𝜕x0,j

𝜕J
𝜕xtr ,k

. (11)

The term 𝜕xtr ,k∕𝜕x0,j in Equation 11 is the transpose
of the term 𝜕xtr ,j∕𝜕x0,k in Equation 10, that is, the adjoint
model. The sensitivities obtained following Equation 11
are accurate to the first order of approximation and inde-
pendent of perturbation size. Also, the gradient of J with
respect to all model variables at all spatial locations can
be generated with only one adjoint model run. In this
study, the response function will be the model error after
an eight-day forecast, that is, J = 1

2

∑
Δx2. The MPAS–SW

adjoint model will be used to quantify the sensitivity of the
error after an eight-day forecast to the initial conditions.

4 MODELING RESULTS

As introduced in Section 2, the solutions from the
MPAS–SW for TC5 under uniform and variable-resolution
meshes will be compared with the high-resolution experi-
ment that serves as the “truth”, to characterize the errors.
As the solutions from each experiment are inherently
of different resolution and are located at different spa-
tial locations, they are first interpolated onto a 1◦ × 1◦
rectangular gridded map for convenience of comparison.
Figure 4 shows the differences between the solutions
under the UR mesh and those under the HR mesh after 0
(t0), 12, 24, 36, and 48 hr. At the initial time, no significant
features can be found except within the mountain region.
After a 12-hr forecast, evident wave patterns start to radiate
from the mountain area throughout the globe and reach
the opposite site of the sphere at a time of 24 hr. The waves
keep propagating around the globe and reach the region
slightly to the east of the mountain at a time of 48 hr. Sim-
ilarly, the differences in the solutions between the VR and
HR meshes are given in Figure 5. The patterns and the
propagation speed are the same as those in the UR case in
Figure 4. However, the magnitudes of the waves in Figure 5
are visibly greater than those in Figure 4, especially in the
results after 36 hr. As illustrated in Figure 1, the resolution
is about 210 km outside the region with fine resolution,
which is coarser than the uniform 120-km mesh. Thus,
when the wave patterns are propagating at coarse reso-
lution, the magnitude of the errors becomes increasingly
greater and will return to the area with enhanced reso-
lution, as shown in Figure 5e. To demonstrate the wave
features for a longer time-scale, the Hovmöller diagrams of

http://wileyonlinelibrary.com
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F I G U R E 4 Differences in the simulated height field between
the UR and uniform high-resolution reference experiments after (a)
0, (b) 12, (c) 24, (d) 36, and (e) 48 hr [Colour figure can be viewed at
wileyonlinelibrary.com]

the errors at the Equator from the initial time to a forecast
time of 8 days are given in Figure 6. Given the mean height
of 5,960 m, the phase speed of the gravity waves is expected
to be about cg =

√
gh0 = 241.8 m⋅s−1. These waves take

1.918 days to circle the Earth with a circumference of
2𝜋a = 4.007 × 107 m. Similarly to Figures 4 and 5, the wave
patterns circle the Earth about every two days, while the
pattern shifts slowly eastward following the Rossby waves
excited due to the orography. The magnitudes of the signals
constantly grow bigger in both UR and VR cases as they

F I G U R E 5 Differences in the simulated height field between
the VR and uniform high-resolution reference experiments after (a)
0, (b) 12, (c) 24, (d) 36, and (e) 48 hr [Colour figure can be viewed at
wileyonlinelibrary.com]

propagate, with those at VR growing significantly faster
than those at UR.

To trace the sources of these gravity-wave error pat-
terns quantitatively, the adjoint model of the MPAS–SW
is sought hereafter. The response function J introduced in
Section 3.2 in this case is defined as the total squared error
after an eight-day forecast, the spatial patterns of which for
both UR and VR experiments are shown in Figure 7. As
observed in Figure 6, the magnitudes of the error signals
are remarkably greater in the VR case than in the UR case.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 6 Differences between
(a) the UR experiment and the
high-resolution experiment and (b) the
VR experiment and the HR experiment
at the Equator (x-axis) with respect to
the forecast time (y-axis) [Colour figure
can be viewed at wileyonlinelibrary.com]

F I G U R E 7 Differences in the
simulated height field (a) between the
UR and the uniform high-resolution
reference experiments and (b) between
the VR and the uniform high-resolution
reference experiments after eight days
[Colour figure can be viewed at
wileyonlinelibrary.com]

These patterns are then taken by the adjoint model as the
input at the time tr = 8 days and are integrated backward
in time to the initial time t0 = 0. Figures 8 and 9 show the
evolution of the sensitivities generated by the MPAS–SW
adjoint model starting from 8 days and backward in time
in the cases of the UR and VR experiments, respectively.
Similarly to the forward propagation of the error signals,
the sensitivities also evolve like gravity waves circling the
Earth. Only several time moments where the sensitivity
patterns pass through the area with refined resolution are
selected for display in Figures 8 and 9. In the case of UR
(Figure 8), the patterns travel through the region without
“interruptions”. In comparison, whenever the signal trav-
els to areas where the resolution is enhanced (as contoured
in Figure 9), the sensitivity becomes close to zero, indi-
cating the insensitivity of forecast errors to the dynamics

taking place within the area. When the adjoint model is
integrated to the time t0, sensitivities are found primarily
within the area where the mountain is configured. In the
case under the VR mesh, all sensitive regions are found
outside areas with refined resolution. Similarly to Figure 6,
the Hovmöller diagrams of the adjoint sensitivities follow-
ing the adjoint calculations are shown in Figure 10. We
remind the reader that the adjoint model started calcula-
tion at the end of day 8 from the initial time, as is also
indicated by the inverted y-axis. Agreeing with the findings
in Figure 6, the sensitivities circle the Earth about every
two days and propagate slowly westward following the
Rossby waves in a nonlinear trajectory. The magnitudes
of the adjoint sensitivities are found to remain consis-
tent, within the fluctuations, with respect to the integra-
tion time, implying consistent contributions to the errors

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 8 The adjoint sensitivities to the model resolution
errors in the height field, (a) 36, (b) 102, (c) 144, and (d) 192 hr prior
to the day 8 forecast in the UR experiment. The mountain heights
are indicated by the green contoured curves [Colour figure can be
viewed at wileyonlinelibrary.com]

shown in Figure 7 along the path of error propagation. In
the case of the VR experiment (Figure 10b), however, the
absolute values of the sensitivities decrease rapidly as the
signal propagates near the region with enhanced resolu-
tion, which agrees with the demonstration in Figure 9. In
addition, unlike those in Figure 6, the paths and the mag-
nitudes of the sensitivities are strictly linear in Figure 10,
as the adjoint model is essentially the transpose of the
linearized MPAS–SW model, which is subject to the accu-
racy offered by a linear approximation. Throughout the
adjoint calculation, no sensitivities can be found near the
longitudinal region with enhanced resolution (indicated
by the black dashed line in Figure 10b), as the dynami-
cal equations are solved with sufficient resolution at those
geographical locations, whereas large sensitivity values in
coarsely resolved areas indicate that all errors come from
the peripheries.

F I G U R E 9 The adjoint sensitivities in the height field, (a) 36,
(b) 102, (c) 144, and (d) 192 hr prior to the day 8 forecast in the VR
experiment. The average of the cell-to-cell distances that were
color-shaded in Figure 1 are indicated by the black contoured
curves, and mountain heights by the green curves [Colour figure
can be viewed at wileyonlinelibrary.com]

5 SUMMARY AND CONCLUSIONS

The idealized simulation experiment of zonal flow over an
orographic region in Williamson et al. (1992), which trig-
gers both gravity and Rossby waves, is conducted under
SCVT meshes of uniform 120-km resolution (UR), vari-
able resolution (VR) from 53–210 km, and uniform 60-km
high resolution (HR). The UR and VR meshes consist of
exactly the same number of grid cells, indicating the same
computational cost. The purpose is to explore, with the
same amount of resources spent, how the VR mesh is likely
to perform in simulating in the emphasized region with
enhanced resolution as opposed to solutions with uniform
resolution. In quantifying the answer to this question, the
HR solutions are treated as references to be compared
with the simulations under both UR and VR meshes, in

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 10 The adjoint
sensitivities to the model resolution
errors in the height field at the Equator
(x-axis) with respect to the forecast time
(y-axis, backward), for (a) the UR
experiment and (b) the VR experiment.
The center longitude of the refined
resolution in the VR mesh in indicated
by the dashed line in (b) [Colour figure
can be viewed at wileyonlinelibrary.com]

order to characterize the fraction of errors in the solution
due to insufficient resolution. The differences in solution
for UR or VR compared with HR show error signals as
rapidly propagating gravity waves, which can circle the
Earth within two days. In addition to the fast propagation,
the magnitude of the errors is constantly growing in both
UR and VR cases. As the resolution over the majority of the
Earth is coarser in the VR mesh than in the UR mesh, the
magnitude growth of errors under VR is significantly faster
than under UR. In addition, the constantly growing errors
can propagate back to the area of interest about every two
days.

Taking the errors in the eight-day forecasts as the
response function, the MPAS–SW adjoint model devel-
oped in Tian (2020) was employed in this study to
obtain the sensitivities to the forecast errors at earlier
times including initial conditions. Following the nonlin-
ear state trajectories, the sensitivities calculated with the
adjoint model show propagation similar to the error grav-
ity waves found in the nonlinear forward solutions. The
main difference in the spatial distribution of the sensi-
tivities between UR and VR cases is that small sensi-
tivities can be found within areas of refined resolution
in the VR experiment, suggesting minimal contribution
to the errors comes from solving dynamical equations
within that region. The adjoint sensitivities in the ini-
tial conditions demonstrate that, in the UR experiment,
the errors are primarily from the areas where the moun-
tain is located, whereas in the VR experiment the sen-
sitivities are located mainly at coarse resolution imme-
diately outside the refined area. The findings show that,
even though, within the area of interest, the dynam-
ical equations are solved at high resolution, the solu-
tions are still subject to errors or deficiencies generated

elsewhere, which propagate into the finely resolved
area.
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