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ABSTRACT: In this study, the tangent linear and adjoint (TL/AD) models for the Model for Prediction Across Scales

(MPAS) ShallowWater (SW) component are tested and demonstrated. Necessary verification check procedures of TL/AD

are included to ensure that the models generate correct results. The TL/AD models are applied to calculate the singular

vectors (SVs) with a 48-h optimization time interval (OTI) under both the quasi-uniform-resolution (UR) and smoothly

variable-resolution (VR) meshes in the cases of Hurricanes Sandy (2012) and Joaquin (2015). For the global domain, the

VR mesh with 30 210 grid cells uses slightly fewer computational resources than the UR mesh with 40 962 cells. It is found

that at the points before Hurricanes Sandy and Joaquin made sharp turns, the leading SV from the VR experiment show

sensitivities in both areas surrounding the hurricane and those relatively far away, indicating the significant impacts from the

environmental flows. The leading SVs from the UR experiments are sensitive to only areas near the storm. Forecasts by

the nonlinear SWmodel demonstrate that in theVRexperiment, Hurricane Sandy has a northwest turn similar to the case in

the real world while the storm gradually disappeared in the UR experiment. In the case of Hurricane Joaquin, the nonlinear

forecast with the VR mesh can generate a track similar to the best track, while the storm became falsely dissipated in the

forecast with the UR mesh. These experiments demonstrate, in the context of SW dynamics with a single layer and no

physics, the track forecasts in the cases of Hurricanes Sandy and Joaquin with the VRmesh are more realistic than the UR

mesh. The SV analyses shed light on the key features that can have significant impacts on the forecast performances.

KEYWORDS: Atmosphere; Shallow-water equations; Hurricanes/typhoons; Mesoscale processes; Singular vectors;

Numerical weather prediction/forecasting

1. Introduction

One of the challenges in numerical weather prediction

(NWP) has been to resolve atmospheric motions at scales as

fine as possible, which is especially the case for global models.

Even with the computational capabilities developed so far,

global atmospheric simulations at the convective scales require

an enormous amount of resources (Yeh et al. 2002; Satoh et al.

2008). The Model for Prediction Across Scales (MPAS) sim-

ulation framework developed by the National Center for

Atmospheric Research (NCAR) offers the options of global

simulation with both uniform and smoothly variable resolu-

tions (Ringler et al. 2008; Skamarock et al. 2012; Park et al.

2013). A prominent feature of MPAS is that the model em-

ploys finite-volume irregular spherical centroidal Voronoi

tessellations (SCVT) meshes on a C grid (Thuburn et al. 2009).

The SCVT mesh allows, in addition to uniform resolution

throughout the globe, enhanced resolutions over a chosen re-

gion and coarse resolutions at the rest of the global domain

with gradual and smooth transitions in between. Thus, no

abrupt changes in resolutions will exist as in the Weather

Research and Forecasting (WRF) Model’s nesting configura-

tion. Hagos et al. (2013) found that the errors generated near the

edges of the high-resolution nesting regions inWRF simulations

are no longer present in the results fromMPAS using smoothly

variable-resolution mesh. Rauscher and Ringler (2014) dem-

onstrated that the variable-resolution mesh improves the ability

of the model dynamics in resolving transient eddies activities.

MPAS was made available to the public by NCAR (Michaelis

et al. 2019).

Lorenz (1975) pointed out that forecast uncertainties, in

general, come from the errors in the initial conditions (ICs)

and the errors in the forecast model. With a given forecast

model, the predictability of weather and climate can be in-

vestigated by calculating the optimal excitation of perturba-

tions, i.e., the singular vector (SV) method (Lorenz 1965;

Farrell 1989). In the pioneering work of Lorenz (1965), it is

pointed out that the fastest-growing perturbations for a given

period of model simulations can be obtained by calculating

the singular vectors of the linearized version of the nonlinear

forecast model, which is also called a tangent linear model.

The tangent linear model and its transpose, also called the

adjoint model, are required for calculating the SVs. This

SV approach was later adopted by numerous studies to effec-

tively determine atmospheric model features, including flow-

dependent predictabilities, atmospheric instabilities, and weather

forecast errors (Lacarra and Talagrand 1988; Farrell 1989; Borges

and Hartmann 1992). At the European Centre for Medium-

Range Weather Forecasts (ECMWF), Buizza (1994), Palmer

et al. (1944), and Buizza and Palmer (1995) calculated the

singular vectors of the operational global forecast model and

found that its predictabilities are highly dependent on the back-

ground flow features. Mureau et al. (1993) and Molteni et al.

(1996) initialized the ensemble of perturbations with the leading

SVs for forecasts with the ECMWF model.

In exploring the predictability of the smoothly variable-

resolution mesh by the MPAS model, the dynamic solver ofCorresponding author: Xiaoxu Tian, xtian15@terpmail.umd.edu
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shallow water (SW) equations is adopted in this study.

Despite the availability of sophisticated atmospheric models

like MPAS-Atmosphere, simple dynamical models such

as MPAS-SW remain broadly feasible tools in realistically

simulating some behaviors of the atmosphere. The shallow

water equations permit a close representation of the atmo-

spheric dynamics, which allows the matching of wind and

potential vorticity to some extent (Juckes 1989). The SW

model captures interactions between waves and vortical mo-

tions in rotating fluids with inexpensive computational costs

(Kent et al. 2017). The SW model, combined with the baro-

tropic model, was implemented operationally for hurricane

track forecasts (Demaria et al. 1992). The SW equations

under the global MPAS framework was first described in

Ringler et al. (2008) to apply the multiresolution SCVT

mesh into global numerical modeling and was further val-

idated in Ringler et al. (2010) with a set of standard test

cases for its robustness.

Based on the nonlinear MPAS-SW model, in this study, the

corresponding tangent linear (TL) and adjoint (AD) models

are first developed manually line by line following the detailed

guidance in Zou et al. (1997) and Tian and Zou (2020). In

addition to the essential role in obtaining model singular

vectors, the TL/AD models also have versatile applicabilities,

FIG. 1. (a) Distances between neighboring grid cells in the variable-resolution mesh that has 30 210 cells to cover

the entire global area. The center of the area with refined resolution is at (358N, 758W]). (b) The variable-resolution

centroidal Voronoi mesh distribution inside the black box defined in (a). (c) As in (b), but with the quasi-uniform-

resolution mesh that has 40 962 grid cells globally.
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including sensitivity analyses and variational data assimilation

(Zou et al. 1997; Errico and Vukicevic 1992; Errico 1997).

In Errico and Vukicevic (1992), the adjoint model of the

Pennsylvania State University (PSU)–NCAR mesoscale model

(MM4) was applied to efficiently and accurately calculate the

sensitivities of a chosen scalar quantity of interest at a forecast

time to the model ICs. Tian and Zou (2020) documented the de-

velopment of TL/AD of the global MPAS-Atmosphere model

and demonstrated the applicability of the MPAS-Atmosphere

adjoint model in efficiently obtaining sensitivities of a re-

sponse function at forecast time to the ICs in a baroclinic

wave case. In this study, the TL/ADmodels of MPAS-SW are

applied to calculate the singular vectors under both uniform

and smoothly variable resolutions to investigate the predict-

ability in the context of SW dynamics. In section 2, more

details of the nonlinear MPAS-SW model are introduced.

The TL/AD models’ developments are described in section 3

and the singular vectors’ calculations in section 4. The SV

results in Hurricanes Sandy (2012) and Joaquin (2015) from

the experiments under both the uniform- and variable-

resolution meshes will be discussed in section 5. Section 6

summarizes and concludes this research.

2. MPAS-SW model description

The shallow water equations have been widely applied in

analyzing the dynamics of rotating and stratified fluids in me-

teorology and oceanography. The MPAS-SW model makes

forecasts following the SW equations discretized to the irreg-

ular hexagonal Voronoi grids. The nonlinear SW equations

may be written as follows (Ringler et al.2010):

›h

›t
1=(hu)5 0, (1)

›u

›t
1 (u=)u1 f k3u52g=(h1b) , (2)

where the model prognostic variables are the fluid thicknesses

h and the velocity vectors u. The Coriolis parameter, f 5
2V sinu, varies with the latitude u throughout the globe, in

which the V is the rotation rate of Earth. The quantity b in

Eq. (2) denotes bottom topography height, which is set as zeros

everywhere in the experiments of this study. The model is

spatially discretized following the Arakawa C grid (Thuburn

et al. 2009). Thus, the variable h is located at the cell centers,

while the velocity vectors u are at the edges of each cell with

directions normal to the edges. Figure 1 is an example showing

the meshes of both smoothly variable resolution (VR) and

quasi-uniform resolution (UR). Figures 1a and 1b illustrate the

cell distances and actual spatial distribution of the cells in the

VR mesh that has in total of 30210 cells globally. The resolu-

tions range from 48 to 240 km. The center of the area with

refined resolution (blue shadings) is located at 358N, 758W in

order to entirely cover the periphery regions that Hurricanes

Sandy and Joaquin pass by, which will be discussed in-depth in

FIG. 2. Geopotential heights at 500 hPa at 0000 UTC (a) 27 and

(b) 29 Oct 2012 from ERA5. (c) The 48-h MPAS-SW forecast of

geopotential heights at 500 hPa valid at 0000 UTC 29 Oct 2012

taking (a) as the initial conditions.

FIG. 3. Variations of the function log(jF(a) 2 1j) for the cor-

rectness check of the MPAS-SW tangent linear model for the 24-h

forecast with respect to the initial perturbation scaling factor a.
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later sections. However, this center location and the orientation

of the high-resolution area can be relocated and pivoted de-

pending on any other studies’ needs. Compared with the VR, the

resolution of theURmesh is about 120km uniformly throughout

the globe, which has in total of 40962 cells. In addition, a uniform

30-km high-resolution (HR) mesh consisting of 655 362 cells is

also included, the simulation results from which are referenced

by those from both VR and UR. Temporally, the fourth-order

Runge–Kutta integral schemewas adopted to achieve the fourth-

order accuracy in time (Ringler et al. 2008). In addition to the

prognostic variables h and u, diagnostic variables including wind

vectors tangential to cell edges y, traditional zonal ul and me-

ridional uu wind vectors, divergences =u, and vorticities = 3 u

are also calculated within each time integration step.

The ICs for MPAS-SW to start simulations are obtained

from the ERA5 dataset from the ECMWF, specifically at

500 hPa with the resolution of 0.258 3 0.258. As midtropo-

spheric flows are nearly nondivergent, short-term forecasts of

flows at this level can be simulated with simple models like SW

(Holton 1973). The geopotential heights (zonal andmeridional

winds) at 500 hPa are first interpolated to the geographical

locations of the cell centers (cell edges). The conventional

zonal and meridional wind vectors are transformed into those

that are normal to cell edges following the relationship of

u
mpas

5u
l
cosu1uu sinu , (3)

where umpas denotes an element in the prognostic variables u in

Eq. (2), i.e., the wind vector normal to cell edges. The ul and uu
represents zonal and meridional wind components, respectively.

The u is the angle between the edge’s normal direction and the

local eastward direction. Figure 2a gives the geopotential heights

at 500 hPa at 0000UTC27October 2012, which also serves as the

IC of a 48-h forecast with the nonlinear MPAS-SW. Figures 2b

and 2c are the geopotential heights at 48 h after Fig. 2a, which is

0000 UTC 29 October from the ERA5 (Fig. 2b) and MPAS-SW

forecast (Fig. 2c). It can be seen that the geopotentials in the 48-h

forecast made with MPAS-SW generally agrees with ERA5,

especially the wave patterns near the 308N and 608N latitudes.

Thus, to some extent, the SW equations can validly simulate the

behaviors in the real atmosphere, as discussed in (Holton 1973).

3. Development of MPAS-SW TL/AD models

a. The tangent linear model

The nonlinear MPAS-SW model can be symbolically

written as

x(t
r
)5M[x(t

0
)] , (4)

where t0 is the initial time and tr a forecast time; x denotes the

vector of prognostic variables including both h and u; andM is

the nonlinear MPAS-SW forward operator taking the IC x(t0)

as input and generating the forecast x(tr) as output. The tan-

gent linear model can be derived by linearizingMwith respect

to every prognostic and diagnostic variable, which can be

written as

Dx(t
r
)5M[x(t

0
)]Dx(t

0
)5

›M[x(t
0
)]

›x
Dx(t

0
) . (5)

In the equation above, the prefix D represents perturbations of

the prognostic variables x, and M is called the tangent linear

operator of MPAS-SW. The TL model M takes small pertur-

bations Dx(t0) as ICs, propagates these perturbations following
the background fluid trajectory, and predicts the distributions

of the perturbations at the forecast time tr. As the TL model is

obtained by linearizing the nonlinear MPAS-SW model, the

smaller the magnitudes of the perturbations are, the more ac-

curately the TL model can predict the perturbation evolutions.

Similarly, the correctness of the developed MPAS-SW TL

model may be verified following the relationship as

F(a)5
kM(x1ap)2M(x)k

kM(x)apk 5 11O(a) . (6)

In this equation, a is a scaling factor that controls the magni-

tudes of the nonzero perturbation vector p. As a becomes

smaller and smaller, the predicted perturbations by theMPAS-SW

TLmodel,M(x)ap, should be expected to be increasingly closer to

the differences between the nonlinear forecast results with and

without perturbations in the ICs, i.e., M[x(t0)1ap]2M[x(t0)].

The numeric results for correctness verification of the MPAS-SW

TL is given in Fig. 3. Both the x and y axis use a logarithm scale.

TABLE 1. Correctness check results of the MPAS-SW adjoint model when it is integrated for 1, 6, 12, 18, and 24 h; lhs: left-hand side; rhs:

right-hand side.

Time (h) lhs rhs (lhs 2 rhs)/lhs

1 328 400.508 977 852 2 328 400.508 977 852 2 0.0

6 330 562.873 921 961 3 330 562.873 921 961 4 3.521 730 085 587 831 3 10216

12 336 961.913 417 705 04 336 961.913 417 705 04 0.0

18 347 456.022 655 873 8 347 456.022 655 873 8 0.0

24 362 645.085 624 939 65 362 645.085 624 939 6 1.605 086 163 325 754 4 3 10216

TABLE 2. Computation time in seconds of 24-h simulations with

a single core by the nonlinear forward (FWD), tangent linear, and

adjoint models under UR (40 962 cells) and VR (30 210 cells)

meshes both with a 180-s time step.

Model

Time (s)

UR VR

FWD 71 50

TL 120 85

AD 230 160
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As the scaling factor a approaches zero in the x axis, the quantity

F(a) inEq. (6) gradually approaches unity untila becomes smaller

than 1028, at which time the machine round-off errors start to af-

fect the calculation results.

b. The adjoint model

The adjointmodelMT is essentially the transpose of the tangent

linear model M, which can be symbolically expressed as

Dx̂(t
0
)5MT(x)Dx̂(t

r
) ; (7)

Dx̂ is the adjoint variable, tr the final time of the forecast period.

It is to be noted that the adjoint model takes the adjoint vari-

able at the final time tr, integrates backward in time, and gen-

erates the output at the starting time t0 of the simulation

period. As the adjoint model runs backward in time, the non-

linear forward simulations’ flow trajectory is still required in

the adjoint calculation processes. Thus, in the system devel-

oped in this research, it was decided that the prognostic vari-

ables h and u will be stored at every time step of the simulation

period, while the diagnostic variables are updated by re-

calculation within each step. As the adjoint model is funda-

mentally the transpose of the tangent linear model, for any two

vectors Dx1 and Dx2, the following relationship should be

satisfied:

hDx
2
,MDx

1
i5 hMTDx

2
,Dx

1
i. (8)

The left-hand side (lhs) is the inner product of Dx2 and the

tangent linear model taking Dx1 as initial perturbations and

integrating from time t0 to tr. The right-hand side (rhs), on the

other hand, is the inner product of the output from the adjoint

model taking Dx2 as the adjoint initial conditions and inte-

grating backward from time tr to t0 and the vector Dx1. If the
adjoint model is developed correctly, the lhs and rhs should

match to the machine accuracy. In MPAS-SW, every variable

is declared as double-precision types, the accuracy of 10213 or

better is expected for the results of Eq. (8). For integration

durations from 1 to 24 h, the results following Eq. (8) are given

in Table 1. In all of the test cases, the lhs and rhs agree with

each other either completely or to the precision of 10216, in-

dicating the correctness of the developed MPAS-SW adjoint

model. Similar to Tian and Zou (2020) studied, the MPAS-SW

adjoint model can readily be applied to efficiently obtain the

sensitivity field in a quantity of interest at the forecast time to

the ICs. As introduced in section 2, the VR (UR)mesh consists

of 30210 (40962) cells.With the same 180-s time step, the actual

time (in seconds) spent to run the nonlinear forward, TL, and

AD MPAS-SW model for a 24-h simulation with a single core

of a desktop is given in Table 2. It confirms that the number of

cells in a mesh is a direct indicator of the computation cost.

4. Singular vectors of the MPAS-SW TL model

The matrix of an atmospheric model is often of dimensions

that are not computationally tractable. Thus, in studies such as

Buizza (1994) and Farrell and Moore (1992), the singular

vectors are obtained through iterative methods such as the

power method and Lanczos algorithm (Strang and Freund

1986) that allow the matrices to be implicitly accounted for.

Farrell andMoore (1992) found the leading singular vector of a

quasigeostrophic model by iteratively running its TL and AD

models. In comparison, Buizza (1994) adopted the Lanczos

FIG. 4. (a) The track of Hurricane Sandy from 21 to 31 Oct 2012 from best track records. The colors of the curve

represent the intensity of the hurricane following the Saffir–Simpson scale. The black cross marks the location

of Hurricane Sandy at 0300 UTC 29 Oct 2012. (b) The fields of height and wind vectors at 500 hPa at 0300 UTC

29 Oct 2012.
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algorithm that allows more than one SVs of the ECMWF op-

erational model to be found, results of which are orthogonal to

each other to the machine accuracy conforming to the theo-

retical basis. In this study, the Lanczos algorithm is adopted to

find the MPAS-SW TL model’s leading SVs. A norm is first

defined as

kDx(t
r
)k2

E
5 hDx(t

r
),Dx(t

r
)i. (9)

Substituting Eqs. (5) and (8) into (9), where the perturbation

at tr can be obtained through the MPAS-SW TL model M,

the norm can be rewritten as

kDx(t
r
)k2

E
5 hMDx(t

0
),MDx(t

0
)i5 hMTEMDx(t

0
), x(t

0
)i, (10)

in which the MTE 5E21MTE and E is a diagonal coefficient

matrix in the definition of the norm that will also be explained

later. The perturbation thatmaximizes the normdefined as jjx(tr)jj2
is then the eigenvector of the self-adjoint or Hermitian operator

MTEM associated with the greatest eigenvalue (Buizza 1994),

(MTEM)n
i
(t
0
)5s2

i ni
(t

0
) , (11)

in which the solved ni are the eigenvectors of the matrixMTEM or

the singular vectors of the TL model M. As MTEM is self-adjoint,

FIG. 5. (a) The differences in h (shaded) and u (vectors) of 4-day nonlinear model simulations under UR mesh

between the perturbed and unperturbed M(x 1 ax) 2 M(x) and (b) the 4-day tangent linear model simulations

with the same perturbation added upon to initial conditions [M(x)ax] in (a). (c),(d) Scatterplots of M(x 1 ax) 2
M(x) and M(x)ax for the state variable (c) h and (d) u with results from the entire global region included. The

correction coefficients for the M(x 1 ax) 2 M(x) and M(x)ax in (c) and (d) are 0.981 and 0.982.
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the singular values si are real and the SVs ni form a complete and

orthogonal set at the time t0 (Zou et al. 1997).

In this study, the norm is specifically defined as the total

perturbation energy (TPE) E of the MPAS-SW model,

E5 1

2A

ð
(HDu2 1 gDh2)dA , (12)

where H is the mean height, and 1/A denotes an average over

the global domain. Letting Dx represent the perturbation

vector, the norm of TPE can also be written as

E5 hDx,EDxi, (13)

where E again is a diagonal matrix of the TPE coeffi-

cients. In the case of Eq. (12), the matrix E 5 diag{(1/2)H,

(1/2)H, . . . , (1/2)H, (1/2)g, (1/2)g, . . . , (1/2)g}, in which the

(1/2)H spans the length of u and the (1/2)g spans the length

of h. To maintain the self-adjointness of MTEM in the presence

of E, the eigenvalue problem in Eq. (11) may now be trans-

formed into

(E1/2MTEME21/2)~n
i
5E21/2MTEME1/2~n

i
5s2

i ~ni
. (14)

The eigenvector obtained by solving Eq. (14): ~ni 5E1/2ni. A

subprogram following Eq. (14) can thus be utilized in

the Lanczos algorithm to solve for the eigenvalues and

eigenvectors.

5. SVs in case studies

a. Hurricane Sandy

Hurricane Sandy, as shown in Fig. 4a, appeared near the

Caribbean Sea as a tropical depression, rapidly intensified

into a category 3 hurricane, andmade its landfall in Cuba (Tian

and Zou 2016). The storm moved northwestward, weakened

to a tropical storm before starting to regain its strength, and

turned northeastward as a category 1 hurricane. At 0600 UTC

29 October, the storm underwent a dramatic northwest turn

and headed toward the coast of New Jersey, the United States.

The SVs under the UR and VR meshes shown in Fig. 1

are demonstrated with the case of Hurricane Sandy.

Specifically, the time at 0300 UTC 29 October, 3 h before

the storm’s dramatic turn, was chosen as the initial time in

both the UR and VR experiment with the MPAS-SW

model. The geographical location of Hurricane Sandy at

0300 UTC 29 October was marked with a black cross in

Fig. 4a, the wind and height fields at 500 hPa in Fig. 4b. To

verify the closeness of the approximations by the TL

model in propagating the perturbations, an initial per-

turbation of Dx 5 1023 3 x was given to the MPAS-SW TL

model and was integrated for four days. A simple scaling

factor of 1023 was chosen so that the magnitudes of the

perturbations to both u and h are of the typical sizes of

model errors for both variables (Tian 2021; Lindskog

et al.2006). In the meantime, the nonlinear MPAS-SW

model with and without the same perturbations were also

run for the same length of time. Figure 5 shows the per-

turbations after four days obtained from the nonlinear

model’s differences with and without perturbations (Fig. 5a)

and those from the TL model predictions (Fig. 5b). The pat-

terns of the perturbations in both cases visually resemble each

other quite closely. The scatterplots of h (Fig. 5c) and u

(Fig. 5d) in the results are both closely aligned along the di-

agonal line with correlation coefficients of 0.981 and 0.982,

respectively, indicating close approximations.

The first five SVs of the TL model with a 48-h optimization

time interval (OTI) in the UR, VR, and HR experiments were

calculated following the procedures in section 4 with the

Lanczos algorithm. The singular values associated with the

leading five SVs are given in Table 3. In UR, the norm ac-

counted for by the first SV is more than 29 times of that by the

second SV, while the ratios are not as significant in the cases of

VR and HR. Both the h and u obtained in the first SV in VR,

UR, and HR experiments are shown in Fig. 6. The sensitive

regions in the first SV from the UR experiments are primarily

near the center of Hurricane Sandy at the analysis time. In

comparison, the results from the VR and HR experiments

show sensitivities in both regions surrounding the hurricane

center and areas that are far away, suggesting potential impacts

from the environmental flows. It was pointed by Kim and Jung

(2009) that, as the TC moves to the region of recurvature, the

sensitivities of the leading SV to the environment flow be-

come greater than those in nonrecurving scenarios. The

results in Figs. 6b and 6c confirm the findings in Kim and

Jung (2009). To verify the downstream impacts brought by

the relatively ‘‘isolated’’ pattern northeast of 408N, 408W in

Fig. 6b, perturbations on both h and u following only that

pattern, as contoured in Fig. 7, are extracted. The nonlinear

MPAS-SW model is then integrated for 48 h with and

without the perturbations as contoured. Figures 7a and 7b

are the evolved perturbations after 33 and 48 h calculated

from differences between the nonlinear MPAS-SW model

simulations. In the first 33 h, the pattern, starting from the

TABLE 3. Singular values of the five leading singular vectors in both UR and VR experiments.

i

UR VR HR

s2
i Percentage s2

i Percentage s2
i Percentage

1 6541.86 93.13% 2103.94 52.21% 851.11 48.12%

2 225.42 3.21% 799.32 19.83% 399.22 22.57%

3 115.27 1.64% 501.96 12.46% 275.63 15.58%

4 74.51 1.06% 349.05 8.66% 130.76 7.39%

5 67.62 0.96% 275.65 6.84% 111.87 6.33%
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east of 408W, slowly propagated westward toward the coast.

During the period between 33 and 48 h, the pattern was

separated into two, one moved further toward the coast,

and the other drifted south. The results confirm that the

remotely isolated pattern to the northeast of Hurricane

Sandy at the initial time will exert its influences within the

48-h OTI.

Forecasts are then made with the MPAS-SW model with

the IC shown in Fig. 4b under the UR, VR, and HR meshes.

It should be pointed out that SV results shown and dis-

cussed above are merely demonstrating how the optimal

errors will evolve in forthgoing simulations. Nonetheless,

the forecasts are made without any perturbations or SVs.

The predicted storm evolutions with UR and VR are shown

in Fig. 8, where the results from UR in the left column and

those from VR in the right. Starting from 0300 UTC

29 October (Fig. 4b), a second low center appeared from

the Arctic region that can be seen in the 9-h forecasts from

both the UR and VR experiments (Figs. 8a,b). The coex-

istence triggered a Fujiwhara effect that caused the two

systems to orbit each other counterclockwise, as shown in

the 27-h forecast (Figs. 8c,d). However, the intensity of

Hurricane Sandy in the UR results significantly weakened,

while the polar cyclone strengthened as the dominant sys-

tem. In contrast, in the VR experiment, Hurricane Sandy

maintained its strength with respect to the polar cyclone. In

the 33-h forecasts (Figs. 8e,f), the polar cyclone in the UR

results still dominates Hurricane Sandy as Sandy moves

further northeast, while in the VR experiment, the Fujiwhara

effect carried on that drove Hurricane Sandy toward the coast

of the United States. Hurricane Sandy nearly disappeared in

the 45-h forecast of UR (Fig. 8g), but made its landfall in the

forecast of VR (Fig. 8h). The nonlinear MPAS-SW forecast

results under the HR mesh is given in Fig. 9. It can be found

that the results from HR and VR agree with each other to a

great extent in terms of the Fujiwhara effect and the sharp turn

toward the U.S. coast. In both the VR and HR experiments,

Hurricane Sandy maintained its dominant role with respect to

the polar cyclone. Figure 10 is the track of Hurricane Sandy

predicted using MPAS-SW under UR (solid curve), VR

(dashed curve), andHR (dotted curve)meshes. Similar to what

took place in the real world, Hurricane Sandy in the VR and

HR experiments made a sharp northwest turn from its original

northeast path, although with different landing points. In

comparison, the predictions with the UR mesh was not able to

simulate such behaviors.

To further investigate the underlying reasons for the sig-

nificant differences in the patterns captured in the leading SVs,

the nonlinear forecasts differences between the UR and HR

and those between the VR and HR experiments at 0, 15, 24,

and 30 h are shown in Fig. 11. Tian (2021) found that the errors

FIG. 7. Evolved perturbations after a (a) 33- and (b) 48-h forecast

(shaded) when only the pattern on the east shown in Fig. 7a

(contoured) is added to the initial conditions in theVRexperiment.

FIG. 6. The distributions of h (shaded) and u (vectors) in the

leading singular vector with a 48-h optimization time interval from

(a) UR, (b) VR, and (c) HR experiments.
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due to insufficient resolution, or undersampling errors, in the

ICs will continuously increase with forecast time following

weather signals simulated by theMPAS-SWmodel. In the case

of VR, the simulations within the areas of fine resolutions will

not contribute to aggravate the errors, as the dynamics within

the areas are numerically solved under practically high reso-

lutions. Figures 11a and 11b are the IC undersampling errors of

UR and VR experiments compared to those of HR. In both

cases, errors can be found both surrounding and to the north-

east of Hurricane Sandy, just as identified by the VR SV shown

in Fig. 6b. During the forecasts, the same as Fig. 7 revealed, the

errors located far away from the hurricane kept propagating

westward as the hurricane moves northeastward (Figs. 11c,d).

The two systems encounter each other at about the time 24 h

after the ICs (Figs. 11e,f). It is near the time of 24 h that the

environmental factor made an impact on the hurricane track

forecast. In Figs. 11g and 11h, the forecast differences between

UR and HR (Fig. 11g) already display a significant storm dis-

location, while the differences in VR and HR (Fig. 11h) show

no such remarkable features. When focusing on the hurricane

itself, the undersampling errors in the UR are always greater

than those in VR due to the coarser resolutions. The structures

FIG. 8. Spatial distributions of the height (shaded) and wind vectors under (left) UR and (right) VR in the (a),(b) 9-,

(c),(d) 27-, (e),(f) 33-, and (g),(h) 45-h forecasts starting from 0300 UTC 29 Oct 2012.

APRIL 2021 T IAN AND IDE 1267

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 03/31/21 07:54 PM UTC



in the leading SVs and their associated norms that quantify

TPE amplifications listed in Table 3 can then be combined with

Fig. 11. In the UR experiment, the first SV accounts for the

absolute majority (.93%) of the first five SVs’ total norms.

The structure of the SV in Fig. 6a implies that the absolute

majority of the forecast errors can come from errors near the

hurricane in the IC. The SV from the VR experiment (Fig. 6b)

managed to more closely capture the fact that both the hurri-

cane itself and the environment signals will have significant

impacts on the forecast errors, as validated by the results shown

in Fig. 11.

b. Hurricane Joaquin

Hurricane Joaquin was a major hurricane that caused sig-

nificant damage in the Caribbean countries. The storm was

known for its sudden shifts during its life span, casting con-

siderable uncertainties into forecasting its future. Figure 12a

shows the track and intensity evolution from its genesis on

25 September 2015. Starting from the south of Bermuda

as a tropical depression, the storm gradually accumulated

strength and made its first sudden southwest turn as a

tropical storm toward the Bahamas, during which process

Joaquin rapidly intensified to a category 4 hurricane. The

storm made its second surprising turn northeastward and

slightly weakened to category 3 before reintensifying to cate-

gory 4 shortly afterward. The time analyzed is chosen at

0600 UTC 2 October 2015, during its second sharp turn, as

marked by the cross in Fig. 12a. The spatial distributions

of the geopotential and wind vector fields at 500 hPa from

ERA5 are given in Fig. 12b, which will serve as the ICs for the

MPAS-SW model.

Similar to Hurricane Sandy’s case, the leading SVs with a

48 OTI at the analysis time under both UR and VR meshes

are calculated and shown in Fig. 13. The first SV under URmesh

is predominantly sensitive to only regions near the hurricane

center at the analysis time. In contrast, the leading SV from the

VR experiment has significant sensitivities to areas both near

FIG. 9. Spatial distributions of the height (shaded) and wind

vectors under HR in the (a) 9-, (b) 27-, (c) 33-, and (d) 45-h fore-

casts starting from 0300 UTC 29 Oct 2012.

FIG. 10. The 48-h track forecast of Hurricane Sandy starting

from 0300 UTC 29 Oct 2012 in the experiments with uniform-

resolution (solid curve), variable-resolution (dashed curve),

and high-resolution (dotted) meshes.
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the hurricane center and far away, mostly downstream of the

hurricane track, implying potential impacts on the hurricane

evolution by the environmental flows in those areas. Five-day

forecasts are also made with the nonlinear MPAS-SW model

under UR and VR meshes with ICs shown in Fig. 12b.

Figure 14 shows the predicted height and wind vector fields

after 30, 48, 72, and 114 h, with the locations from the best track

indicated by the green curves. In the UR experiment forecast,

the cyclone in both the 30- and 48-h forecast progressed fol-

lowing the best track only with significantly weakened inten-

sities. In the 72-h forecast, the storm drifted offtrack eastward

and split into two parts with even weaker winds, which com-

pletely disappeared in the 114-h forecasts. Whereas in the VR

experiment, throughout the 5-day forecast, the storm not only

progressed closely following the best track but also maintained

its intensity as in the real world with cyclonic signatures shown

in Fig. 14.

6. Summary and conclusions

With rapidly growing computational power, a sophisticated

atmospheric model such as the MPAS-Atmosphere is allowed

FIG. 11. The differences of the height (shaded) and wind vectors in nonlinear forward MPAS-SW simulations

(left) between the UR and HR and (right) between the VR and HR in the (a),(b) 0-, (c),(d) 15-, (e),(f) 24-, and

(g),(h) 30-h forecasts.
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to simulate the atmospheric motions more and more closely

with a greater and greater number of degrees of freedom

(Skamarock et al. 2012). At the same time, simple dynamical

models are still remarkably useful in resembling certain aspects

of the atmosphere. The shallow water model is such an ex-

ample. In this research, the global shallow water model under

the irregular spherical centroidal Voronoi tessellations of the

MPAS framework was adopted. The tangent linear and adjoint

models of the MPAS-SW are first developed manually line by

line. Necessary correctness verification procedures were con-

ducted to ensure that the TL/AD models of the MPAS-SW

are developed correctly. Among many of their potential

usefulnesses, such as sensitivity analysis and variational

data assimilation, the TL/AD models of MPAS-SW are

readily applicable in calculating the desired number of sin-

gular vectors. The case of Hurricane Sandy was selected

to compare the predictabilities under the mesh with a uni-

form resolution of 120 km (40 962 cells), the mesh of vari-

able resolutions from 48 to 240 km (30 210 cells), and the

mesh of uniform high resolution of 30 km (655 362 cells).

Taking the height and wind vectors at 500 hPa from the

ERA5 dataset as ICs, it proves that the MPAS-SW TL model

is able to well approximate the evolutions of perturbations

added into the ICs.

With a total perturbation energy norm, the leading SVs

of a 48-h optimization time for the MPAS-SW TL model

are calculated with the Lanczos algorithm, an iterative

method to solve large-scale eigenvalue/eigenvector prob-

lems allowing the matrix to be implicitly expressed. In this

study, the leading SVs of 48-h optimization time in cases

of both Hurricanes Sandy and Joaquin are calculated.

The results suggest that the leading SV accounts for the

absolutely greatest amplification of errors in the ICs during

this 48-h forecast period. The structures of the first SV

from the experiments with the variable-resolution and

the high-resolution meshes well agree with the study of

FIG. 12. (a) The track ofHurricane Joaquin from 25 Sep to 5Oct 2015 from best track records. The colors of the curve

represent the intensity of the hurricane following the Saffir–Simpson scale. The black cross marks the location of

Hurricane Joaquin at 0600UTC2Oct 2015. (b) The fields of height andwind vectors at 500 hPa at 0600UTC2Oct 2015.

FIG. 13. The distributions of h (shaded) and u (vectors) in the

leading singular vector with a 48-h optimization time interval from

(a)UR and (b)VR experiments in the case of Hurricane Joaquin at

0600 UTC 2 Oct 2015.
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Kim and Jung (2009) that the forecast are significantly

sensitive to the environmental flows at the time of hurri-

cane’s recurvature. The SV results with the uniform-

resolution mesh at the same analysis time was not able to

capture such a feature, implying weaker predictability over

the same region yet more expensive computation than the

VR. The forecasts with nonlinear MPAS-SWmodel further

verified that both the VR and HR, to some extent, were able

to reproduce the sharp recurvature of Hurricane Sandy and

maintain its dominant strength while interacting with a

polar cyclone in the environment. In contrast, Hurricane

Sandy was erroneously entrained into the environmental

polar cyclone in the simulations with the UR mesh. The

comparisons of the nonlinear MPAS-SW forecasts from

both UR and VR experiments to those from the HR further

verifies that the features both near and far away from the

hurricane captured in the leading SV in VR experiment

play significant roles in the forecast results.

Similar results with VR mesh in Hurricane Joaquin at

the time of its recurvature were also obtained that the lead-

ing singular vector successfully captured the environmen-

tal factor, while the results with UR mesh failed to do so.

FIG. 14. Spatial distributions of the height (shaded) andwind vectors under (left)URand (right)VR in the (a),(b)

30-, (c),(d) 48-, (e),(f) 72-, and (g),(h) 12-h forecasts starting from 0600 UTC 2 Oct 2015. The green curve indicates

the best track records for Hurricane Joaquin.
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The track forecast of Hurricane Joaquin with the VR mesh

was also significantly more realistic than that with the UR

mesh. It should be pointed out that all the experiments in this

study are in the context of shallow water dynamics, i.e., single

layer with no physics. Thus, future efforts will extend this

study to the more sophisticatedMPAS-Atmosphere model to

analyze the predictabilities under the multiresolution simu-

lation frameworks.
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